zht
发布于 2025-01-19 / 9 阅读
0
0

实验报告:OmniMVS数据集与ft效果

OmniThings

OmniHouse

Sunny

>1

>3

>5

MAE

RMSE

>1

>3

>5

MAE

RMSE

>1

>3

>5

MAE

RMSE

Our

35.10

13.85

6.20

2.98

4.58

17.32

2.95

0.95

1.15

1.93

17.22

3.24

0.67

0.76

1.66

OmniMVS

47.72

15.12

8.91

2.40

5.27

21.09

4.63

2.58

1.04

1.97

13.93

2.87

1.71

0.79

2.12

DispNet-CSS

50.62

27.77

19.50

4.06

7.98

26.56

11.69

7.16

1.54

3.18

24.80

8.54

5.59

1.44

4.02

python train_fisheye.py --batch-size=3 --num-workers=12 --lr=0.001 --load-weight=/home/tian/weights/1221备份/model_sunny_best_model.pth --task-type=sunny
python train_fisheye.py --batch-size=3 --num-workers=12 --lr=0.001 --load-weight=/home/tian/weights/1221备份/model_omnithings_best_model.pth --task-type=omnithings

omnihouse's best model, finetune on our render dataset, test on real scenes.

before ft

Omnidataset's cameras are different (extrincs & intrincs) with ours.

We render dataset with cameras as same as real scenes (FOV220)

Global rmse: 3.0661
Global mae: 2.7942
Global rel_error: 0.8915
Global rmse_0.1_3m: 1.8209
Global mae_0.1_3m: 1.7209
Global rel_error_0.1_3m: 0.8562
Global rmse_0.1_5m: 2.7856
Global mae_0.1_5m: 2.5654
Global rel_error_0.1_5m: 0.8868
Global rmse_0.1_7m: 3.0661
Global mae_0.1_7m: 2.7942
Global rel_error_0.1_7m: 0.8915
Global rmse_0.1_10m: 3.0661
Global mae_0.1_10m: 2.7942
Global rel_error_0.1_10m: 0.8915
Global rmse_0.1_2m: 1.2588
Global mae_0.1_2m: 1.2158
Global rel_error_0.1_2m: 0.7988
Global loss: 144.2654
[EVAL ONLY] RMSE: 3.0661266137522163

python train_fisheye.py --load-weight=tmp/model_omnihouse_best_model.pth --task-type=realscenes --eval-only True --exp-name=test_real_wo_ft

ft on our render dataset (Digital twin camera)

Global rmse: 1.2573
Global mae: 1.0718
Global rel_error: 0.4735
Global rmse_0.1_3m: 0.9502
Global mae_0.1_3m: 0.8142
Global rel_error_0.1_3m: 0.6036
Global rmse_0.1_5m: 1.1482
Global mae_0.1_5m: 0.9830
Global rel_error_0.1_5m: 0.4795
Global rmse_0.1_7m: 1.2573
Global mae_0.1_7m: 1.0718
Global rel_error_0.1_7m: 0.4735
Global rmse_0.1_10m: 1.2573
Global mae_0.1_10m: 1.0718
Global rel_error_0.1_10m: 0.4735
Global rmse_0.1_2m: 0.9325
Global mae_0.1_2m: 0.8220
Global rel_error_0.1_2m: 0.7530
Global loss: 39.7996
[EVAL ONLY] RMSE: 1.2573211640330917

python train_fisheye.py --load-weight=tmp/render119_model_realscenes_last_model.pth --task-type=realscenes --eval-only True --exp-name=test_real_ft_on_my_render


评论